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Methods of the perturbation theory are used to investigate the unsteady mode 

cf operation of an isothermal reactor with longitudinal dispersion. An approx- 
imate expression for the performance of the reactor working in dynamic mode 

is obtained, The results obtained are compared with the corresponding data 
obtained for a reactor with perfect mixing. 

Mathematical analysis of the distinctive features of the chemical flow reactors 
with perfect mixing in the unsteady mode was carried out in a number of works 

e. g. [l-lo]. It was shown that use of the unsteady modes of operation may 
lead to improvement in the performance of a chemical reactor not only in the 
case of a s~aightforward single stage chemical reaction with nonlinear kinetics 

[‘i--Q], but also in the case of reactors in which complex multistep chemical 
reactions take place [l-6, lo]. The signiiicant influence of the unsteady 

character on the selectivity and other characteristics of the chemical process 

[1-S] is noted. 

tion takes place. The unsteady equation for the concentration written in dimension- 

less variables has the form 
d( 1 @r dr 
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liere X denotes the spatial coordinate (0 < x < L); L is the reactor length; T is 
time; C is the concentration of the reacting species; Co is the steady state concen- 

tration of the reacting species in the input flow; U is the rate of supply of the reagent; 

D is the diffusion coefficient and F (C) describes the dependence ofthe chemical 
reaction rate on the reagent concentration. 

We assume that the concentration of the reacting species at the reactor input can 

be expressed as a sum of a constant term c,, and an unsteady perturbation U) (t) Cs. 
Then the boundary conditions at the reactor input for (1. l), which are also valid for 
the unsteady state, have the following,dimensionless form [4,123: 

We specify, as the initial condition, the following distribution of concentration corr- 
esponding to the stable, steady state solution of the problem (1. l), (1.2) for 
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t = 0, c (I, 0) = cg (x) 
(1.3) 

The problem (1. l)-( 1.3) of unsteady distribution of concentration in the reactor 
in the presence of a perturbation at the input, does not have an exact analytic solu- 

tion. We construct an approximate solution for this problem, using the perturbation 
theory under the assumption that the parameter P is small [13]. We shall assume 
that the perturbation of the initial concentration is small and of order P, i. e. CD (t) 
= P ‘p (t) = 0 (P). Thus we assume that the perturbation of the initial concentration 
is of the same order of smallness as the Peclet number. When their order of magnit- 
ude is not the same, then the solution can be obtained in the manner analogous to that 

used below. 

We note that when P = 0, then the problem formulated for a reactor with axial 
dispersion is transformed into the problem for a reactor with complete mixing in which 

the reagent concentration at the input is equal to its unperturbed, steady state value. 

The solution of this problem corresponds to the zero approximation in the asymptot- 
ic expansion of the solution of the problem (1.1) - (1.3) in P . 

2. Solution of the problem. Weshallseekasolution of the 
problem (I.. 1 j( 1.3) in the form of an expansion in powers of P, and write the 

initial condition (1.3) also in the form of a series 

‘U 

c (I, t) = 2 pnc7, (x, t) 
1LE-o 

t =o, r (x, 0) = cs (x) = ,g pnc,, (TX) 

n=0 

(2.1) 

(2.2) 

We note that the choice of the initial condition in the form of the steady distribu- 
tion of concentration, eliminates the need for considering the time-dependent bound- 

ary layer near t = 0 and for matching the outer and inner asymptotic expansion [14]. 

The above condition does not affect the unsteady behavior of the solution provided 
that the time interval is sufficiently long. 

Let us substitute the expansion (2.1) into (I.. l), (1.2) and write the function f (c) 

in the form of a series in powers of P. Equating the coefficients of like powers of 

I-‘, we obtain the equations as well as the boundary and initial conditions for the 

functions C, (x, t). The boundary value problems for n = 0, 1, 2 and 3 are, 

respectively, 

a2coii3x2 = 0 

ar0 ar0 x=(), -x0; x=1, as==0 
ax 

t = 0, co (x, 0) L= cos 
I%, 2!!!- $- $ _1- f (lo) 3F= at 

ac, X~O, -~ro-l; ac1 
ax x=1, -YJy-=O’ 
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t= 0, cs h, 0) = CQS (4 

using these boundary value problems to determine the functions C, (5, t) (n = 0, 1, 2, 

3) we obtain, for c (2, t) , the following expression with the accuracy of up to 
and including terms of second order of smallness: ’ 

D 
L 

$- (a,’ -I- 4 - f) + 2 (a, - 0) -t -f- + cAt s n, (2) eAT rlz 
1 

0 

A = 1-t f’, 3 = ($ $3j’) j, a@) = e-At 5 q2 (2) eATdz 
0 

The approximate analytic expression (2.3) obtained makes it possible to investi- 
gate the influence which the unsteady perturbations of concentration in the input flow 
have on the time-averaged degree of conversion of the reagent within the reactor, 
and compare it with the steady state degree of conversion. 

Let us assume, for deftiteness, that the time-dependence of the perturbations of 
the input concentration has the form 

‘p (t) = g sin 618 (2.4) 

where the time-averaged value of tie reagent concen~ation in the input flow retains 
its steady state value. 

By definition, the mean degree of conversion in the unsteady periodic mode of 
frequency u is equal to: 

r+z? I@ 
r=i-$ \ c(1,t)dt (2.5) 

z 
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Using (2.3)-( 2.51, we can obtain the following expression for the variation in the 
reactor performance caused by the fluctuation in the input concentration, for the 

case when the perturbation is harmonic in character: 

where &I denotes the mean degree of conversion of the reagent in the unsteady per- 

iodic mode, and E, is the degree of conversion in the steady state process, 
The expression (2.6) provides the means of estimating the influence of various 

factors on the performance efficiency of an isothermal reactor with long~~dina~ mix- 
ing, in the dynamic mode. It is clear that the increase (decrease) in the degree of 
reagent conversion on passing from the steady state to the unsteady mode depends in 
the type of reactor in question, to a large degree, on the chemical kinetics. The 
absolute value of the change in the degree of conversion attains its maximum in the 

qua&steady case, and the degree of conversion approaches itssteadystate value with 

increasing frequency of perturbation in the input reagent concentration. 

Comparing (2.3) and (2.6) with the corresponding results for the reactor with 
complete mixing, we can see that although the concentration profiles can be appreci- 
ably different in the unsteady modes, the time-averaged values of the degree of con- 

version agree for both cases with the accuracy of up to the terms of second order in 

P inclusive. Xt follows that the unsteady effects appearing in the reactors with com- 
plete mixing till also be characteristic for the systems with distributed parameters. 

In the case of a weak dispersion, similar formulas can be used for the quantitative 

estimates of these effects. 
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